Esercizi Integrali tripli coordinate cilindriche e sferiche (fine quinta settimana)

Calcolare i seguenti integrali (primi 3 esercizi usare coordinate cilindriche, gli altri 3 usare coordinate sferiche)

1. $\int_{\Omega} ze^{x^2+y^2} \, dV$, \quad $\Omega = \{(x, y, z) \mid x^2 + y^2 \leq z \leq 1\}$. \quad ($\pi/2$)

2. $\int_{\Omega} \frac{1}{\sqrt{x^2+y^2}} \, dV$, \quad $\Omega = \{(x, y, z) \mid z \geq 0, x^2 + y^2 + z^2 \leq 1, x^2 + y^2 \leq z^2\}$. \quad ($\pi^2/4$)

3. $\int_{\Omega} \frac{1}{\sqrt{x^2+y^2+z^2}} \, dV$, \quad $\Omega = \{(x, y, z) \mid z^2 \leq x^2 + y^2 \leq 2z - z^2\}$. \quad ($\sqrt{2}/3 \cdot \pi$)

4. $\text{vol}(\Omega) = \int_{\Omega} 1 \, dV$, \quad $\Omega = \{(x, y, z) \mid x^2 + y^2 + z^2 \leq y\}$. \quad ($\pi/6$)

5. $\int_{\Omega} \log(x^2+y^2+z^2) \, dV$,

\[
\Omega = \{(x, y, z) \mid x^2 + y^2 + z^2 \leq 1\} \cap \{(x, y, z) \mid z \geq 0, x^2 + y^2 \leq z^2\}. \quad (2\sqrt{2}/9 \cdot \pi \cdot (1 - \sqrt{2}))
\]

6. Per quali $\alpha > 0$ è finito il limite $\lim_{R \to \infty} I_R$ con

\[
I_R = \int_{\Omega_R} \left(\frac{1}{\sqrt{x^2+y^2+z^2}}\right)^{\alpha} \, dV
\]

dove $\Omega_R = \{(x, y, z) \mid 1 \leq x^2 + y^2 + z^2 \leq R^2\}$. \quad ($\alpha > 3$)